Two modulatory inputs exert reciprocal reinforcing effects on synaptic input of premotor interneurons for withdrawal in terrestrial snails.
نویسندگان
چکیده
A cluster of serotonergic cells in the rostral part of pedal ganglia of the terrestrial snail Helix lucorum was shown previously to participate in modulation of withdrawal behavior, and to be necessary for elaboration of aversive withdrawal conditioning in intact snails. In the present experiments local extracellular stimulation of the serotonergic cells elicited a pairing-specific increase (difference between paired and explicitly unpaired sessions was significant, P<0.01) of synaptic responses in the premotor interneurons involved in withdrawal to paired nerve stimulation. Intracellular stimulation of only one Pd4 cell from the pedal group of serotonergic neurons increased (P<0.05) synaptic responses to contingent test nerve stimulation significantly in the same premotor interneurons for 2-3 hr. Mesocerebral cells are known to participate in male sexual behavior, and their extracellular stimulation was shown previously to suppress the amplitude of synaptic responses in withdrawal interneurons. Local extracellular stimulation of the mesocerebral cells elicited a pairing-specific decrease (P<0.01) of synaptic responses to contingent test nerve stimulation in the premotor interneurons involved in withdrawal for 2-3 hr. Paired application of met-enkephaline (10(-6) M, some mesocerebral cells are enkephaline-like immunoreactive) also selectively decreased synaptic responses to contingent nerve stimulation in the premotor interneurons for hours. Thus, two modulatory inputs exert pairing-specific effects that influence the same synaptic connection in opposite directions, which may underlie the long-term up- and down-regulation of behavioral responses.
منابع مشابه
Neurobiology of Learning and Memory
A cluster of 40 serotonergic cells in the rostral part of pedal ganglia of the terrestrial snail Helix lucorum was shown previously to participate in the modulation of withdrawal behavior and to be necessary during the acquisition of aversive withdrawal conditioning in intact snails. Local extracellular stimulation of the serotonergic cells paired with a test stimulus elicited a pairing-specifi...
متن کاملResponses of Withdrawal Interneurons to Serotonin Applications in Naïve and Learned Snails Are Different
Long-term changes in membrane potential after associative training were described previously in identified premotor interneurons for withdrawal of the terrestrial snail Helix. Serotonin was shown to be a major transmitter involved in triggering the long-term changes in mollusks. In the present study we compared the changes in electrophysiological characteristics of identifiable premotor interne...
متن کاملSegregation of behavior-specific synaptic inputs to a vertebrate neuronal oscillator.
Although essential for understanding the mechanisms underlying sensorimotor integration and motor control of behaviors, very little is known about the degree to which different behaviors share neural elements of the sensorimotor command chain by which they are controlled. Here, we provide, to our knowledge, the first direct physiological evidence that various modulatory premotor inputs to a ver...
متن کاملBackground synaptic activity modulates the response of a modeled purkinje cell to paired afferent input.
We studied the possible effects of background excitatory and inhibitory synaptic activity on Purkinje cell responses to paired pulse inputs using a morphologically and physiologically detailed compartmental model. Paired-pulse inputs were provided via synapses associated with the ascending segment of the granule cell axon in the presence of variable amounts of background synaptic input provided...
متن کاملFrequency-Dependent Gating of Synaptic Transmission and Plasticity by Dopamine
The neurotransmitter dopamine (DA) plays an important role in learning by enhancing the saliency of behaviorally relevant stimuli. How this stimulus selection is achieved on the cellular level, however, is not known. Here, in recordings from hippocampal slices, we show that DA acts specifically at the direct cortical input to hippocampal area CA1 (the temporoammonic (TA) pathway) to filter the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Learning & memory
دوره 6 2 شماره
صفحات -
تاریخ انتشار 1999